Approximation Algorithms for Online Weighted Rank Function Maximization under Matroid Constraints
نویسندگان
چکیده
Consider the following online version of the submodular maximization problem under a matroid constraint: We are given a set of elements over which a matroid is defined. The goal is to incrementally choose a subset that remains independent in the matroid over time. At each time, a new weighted rank function of a different matroid (one per time) over the same elements is presented; the algorithm can add a few elements to the incrementally constructed set, and reaps a reward equal to the value of the new weighted rank function on the current set. The goal of the algorithm as it builds this independent set online is to maximize the sum of these (weighted rank) rewards. As in regular online analysis, we compare the rewards of our online algorithm to that of an offline optimum, namely a single independent set of the matroid that maximizes the sum of the weighted rank rewards that arrive over time. This problem is a natural extension of two well-studied streams of earlier work: the first is on online set cover algorithms (in particular for the max coverage version) while the second is on approximately maximizing submodular functions under a matroid constraint. In this paper, we present the first randomized online algorithms for this problem with poly-logarithmic competitive ratio. To do this, we employ the LP formulation of a scaled reward version of the problem. Then we extend a weighted-majority type update rule along with uncrossing properties of tight sets in the matroid polytope to find an approximately optimal fractional LP solution. We use the fractional solution values as probabilities for a online randomized rounding algorithm. To show that our rounding produces a sufficiently large reward independent set, we prove and use new covering properties for randomly rounded fractional solutions in the matroid polytope that may be of independent interest.
منابع مشابه
Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms
Constrained submodular maximization problems have long been studied, most recently in the context of auctions and computational advertising, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less well understood: the first approximation algorithms even for the unconstrained setting were gi...
متن کاملOn the Pipage Rounding Algorithm for Submodular Function Maximization - a View from Discrete Convex Analysis
We consider the problem of maximizing a nondecreasing submodular set function under a matroid constraint. Recently, Calinescu et al. (2007) proposed an elegant framework for the approximation of this problem, which is based on the pipage rounding technique by Ageev and Sviridenko (2004), and showed that this framework indeed yields a (1 − 1/e)-approximation algorithm for the class of submodular...
متن کاملMaximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملOn maximizing a monotone k-submodular function subject to a matroid constraint
A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative ksubmodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also pro...
متن کاملConstrained Maximization of Non-Monotone Submodular Functions
The problem of constrained submodular maximization has long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of nonmonotone submodular maximization is not as well understood: the first approximation algorithms even for unconstrainted maximization were given by Feige et al. [FMV07]. More recently, Lee et al. [LMNS09] ...
متن کامل